Using metabarcoding and droplet digital PCR to investigate drivers of historical shifts in cyanobacteria from six contrasting lakes

Author:

Picard Maïlys,Pochon Xavier,Atalah Javier,Pearman John K.,Rees Andrew,Howarth Jamie D.,Moy Christopher M.,Vandergoes Marcus J.,Hawes Ian,Khan Samiullah,Wood Susanna A.

Abstract

AbstractThe frequency and intensity of cyanobacterial blooms is increasing worldwide. Multiple factors are implicated, most of which are anthropogenic. New Zealand provides a useful location to study the impacts of human settlement on lake ecosystems. The first humans (Polynesians) arrived about 750 years ago. Following their settlement, there were marked landscape modifications which intensified after European settlement about 150 years ago. The aims of this study were to reconstruct cyanobacterial communities in six lakes over the last 1000 years and explore key drivers of change. Cyanobacterial environmental DNA was extracted from sediment cores and analysed using metabarcoding and droplet digital PCR. Cyanobacteria, including potentially toxic or bloom forming species, were already present in these lakes prior to human arrival, however their overall abundance was low. Total cyanobacteria abundance and richness increased in all lakes after European settlement but was very pronounced in four lakes, where bloom-forming taxa became dominant. These shifts occurred concomitant with land-use change. The catchment of one deteriorated lake is only moderately modified, thus the introduction of non-native fish is posited as the key factor driving this change. The paleolimnological approach used in this study has enabled new insights into timing and potential causes of changes in cyanobacterial communities.

Funder

Ministry of Business, Innovation and Employment

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3