A novel GBDT-BiLSTM hybrid model on improving day-ahead photovoltaic prediction

Author:

Wang Senyao,Ma Jin

Abstract

AbstractDespite being a clean and renewable energy source, photovoltaic (PV) power generation faces severe challenges in operation due to its strong intermittency and volatility compared to the traditional fossil fuel power generation. Accurate predictions are therefore crucial for PV’s grid connections and the system security. The existing methods often rely heavily on weather forecasts, the accuracy of which is hard to be guaranteed. This paper proposes a novel GBDT-BiLSTM day-ahead PV forecasting model, which leverages the Teacher Forcing mechanism to combine the strong time-series processing capabilities of BiLSTM with an enhanced GBDT model. Given the uncertainty and volatility inherent in solar energy and weather conditions, the gradient boosting method is employed to update the weak learner, while a decision tree is incorporated to update the strong learner. Additionally, to explore the correlation between photovoltaic power output and historical time-series data, the adaptive gradient descent-based Adam algorithm is utilized to train the bidirectional LSTM model, enhancing the accuracy and stability of mid- to long-term time-series predictions. A prediction experiment, conducting with the real data from a PV power station in Sichuan Province, China, was compared with other methods to verify the model’s effectiveness and robustness.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3