Metabolomics analysis of dietary restriction results in a longer lifespan due to alters of amino acid levels in larval hemolymph of Bombyx mori

Author:

Wang Meixian,Shen Yichen,Tan Zhicheng,Yasen Ayinuer,Fan Bingyan,Shen Xingjia

Abstract

AbstractDietary restriction (DR) has been a very important discovery in modern aging biology research. Its remarkable anti-aging effect has been proved in a variety of organisms, including members of Lepidoptera, but mechanisms by which DR increases longevity are not fully understood. By using the silkworm (Bombyx mori), a model of lepidopteran insect, we established a DR model, isolated hemolymph from fifth instar larvae and employed LC–MS/MS metabolomics to analyze the effect of DR on the endogenous metabolites of silkworm, and tried to clarify the mechanism of DR to prolong lifespan. We identified the potential biomarkers by analyzing the metabolites of the DR and control groups. Then, we constructed relevant metabolic pathways and networks with MetaboAnalyst. DR significantly prolonged the lifespan of silkworm. The differential metabolites between the DR and control groups were mainly organic acids (including amino acid), and amines. These metabolites are involved in metabolic pathways such as amino acid metabolism. Further analysis showed that, the levels of 17 amino acids were significantly changed in the DR group, indicating that the prolonged lifespan was mainly due to changes in amino acid metabolism. Furthermore, we identified 41 and 28 unique differential metabolites in males and females, respectively, demonstrating sex differences in biological responses to DR. The DR group showed higher antioxidant capacity and lower lipid peroxidation and inflammatory precursors, with differences between the sexes. These results provide evidence for various DR anti-aging mechanisms at the metabolic level and novel reference for the future development of DR-simulating drugs or foods.

Funder

Postgraduate Research & Practice Innovation Program of Jiangsu Province

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3