Effects of thickness reduction in cold rolling process on the formability of sheet metals using ANFIS

Author:

Xie Yichen,Wu Yuping,Jalali Arman,Zhou Huajie,Amine Khadimallah Mohamed

Abstract

AbstractCold rolling has detrimental effect on the formability of sheet metals. It is, however, inevitable in producing sheet high quality surfaces. The effects of cold rolling on the forming limits of stretch sheets are not investigated comprehensively in the literature. In this study, a through experimental study is conducted to observe the effect of different cold rolling thickness reduction on the formability of sheet metals. Since the experimental procedure of such tests are costly, an artificial intelligence is also adopted to predict effects of cold thickness reduction on the formability of the sheet metals. In this regard, St14 sheets are examined using tensile, metallography, cold rolling and Nakazima’s hemi-sphere punch experiments. The obtained data are further utilized to train and test an adaptive neural network fuzzy inference system (ANFIS) model. The results indicate that cold rolling reduces the formability of the sheet metals under stretch loading condition. Moreover, the tensile behavior of the sheet alters considerably due to cold thickness reduction of the same sheet metal. The trained ANFIS model also successfully trained and tested in prediction of forming limits diagrams. This model could be used to determine forming limit strains in other thickness reduction conditions. It is discussed that determination of forming limit diagrams is not an intrinsic property of a chemical composition of the sheet metals and many other factors must be taken into account.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3