Effect of miR-206 on lower limb ischemia–reperfusion injury in rat and its mechanism

Author:

Wang Hui,Shi Meng-Jie,Hu Zhang-Qin,Miao Lin,Cai He-Shi,Zhang Rui-Peng

Abstract

AbstractLower limb ischemia–reperfusion is a common pathological process during clinical surgery. Because lower limb ischemia–reperfusion usually aggravates ischemia-induced skeletal muscle tissue injury after lower limb ischemia–reperfusion, it also causes remote organ heart, intestine, liver, lung and other injuries, and there is no effective clinical treatment for lower limb ischemia–reperfusion injury, so it is urgent to study its injury mechanism. In this study, the rat model of lower limb ischemia–reperfusion was established by clamping the femoral artery with microarterial clips, and the wall destruction such as intimal injury, cell edema, collagen degeneration, neutrophil infiltration, and elastic fiberboard injury of the femoral artery wall was detected. The expression of inflammatory factors was detected by immunohistochemistry. miR-206 preconditioning was used to observe the expression of inflammatory factors, redox status and apoptosis in the vascular wall of rats after acute limb ischemia–reperfusion. Our findings suggest that vascular endothelial cell edema increases, wall thickening, neutrophil infiltration, and elastic fiber layer damage during IRI. Inflammatory factor expression was increased in femoral artery tissue, and miR-206 expression levels were significantly down-regulated. Further studies have found that miR-206 attenuates lower limb IRI by regulating the effects of phase inflammatory factors. In this study, we investigated the effect of miR-206 on inflammatory factors and its possible role in the development of lower limb IRI, providing new research ideas for the regulatory mechanism of lower limb IRI, and providing a certain theoretical basis for the treatment of lower limb ischemia–reperfusion injury after surgery or endovascular intervention.

Funder

Shaanxi Province Science and Technology Project

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3