Synthesis, characterization, and biodegradation studies of new cellulose-based polymers

Author:

Tabaght F. E.,Azzaoui K.,Idrissi A. El,Jodeh S.,Khalaf B.,Rhazi L.,Bellaouchi R.,Asehraou A.,Hammouti B.,Sabbahi R.

Abstract

AbstractNew cellulose carbamates and cellulose acetate carbamates were prepared by classical addition reaction of isocyanates with alcohols. A Telomerization technique was used to make the grafted molecules strongly anchored and more hydrophobic. These molecules were grafted into cellulose and CA chains, respectively. The structures of the synthesized derivatives were confirmed using Nuclear Magnetic Resonance Spectroscopy, Fourier Transform Infrared and Thermogravimetric Analysis, and their solubility phenomenon was also established, and the carbamate derivatives showed better solubility compared to cellulose. Their ability to biodegrade was investigated, and it was concluded that Cell-P1 and CA-P1 derivatives are more biodegradable than the other samples. These results suggest that the resulting compounds can be used effectively in many useful industrial fields, for instance, eco-friendly food packaging, domains that use materials that are environmentally friendly and sustainable and the development of green chemistry.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3