Validation of a high-fidelity training model for fetoscopic spina bifida surgery

Author:

Joyeux Luc,Javaux Allan,Eastwood Mary P.,De Bie Felix R.,Van den Bergh Gert,Degliuomini Rebecca S.,Vergote Simen,Micheletti Talita,Callewaert Geertje,Ourselin Sebastien,De Coppi Paolo,Van Calenbergh Frank,Vander Poorten Emmanuel,Deprest Jan

Abstract

AbstractOpen fetal surgery for spina bifida (SB) is safe and effective yet invasive. The growing interest in fetoscopic SB repair (fSB-repair) prompts the need for appropriate training. We aimed to develop and validate a high-fidelity training model for fSB-repair. fSB-repair was simulated in the abdominal cavity and on the stomach of adult rabbits. Laparoscopic fetal surgeons served either as novices (n = 2) or experts (n = 3) based on their experience. Technical performance was evaluated using competency Cumulative Sum (CUSUM) analysis and the group splitting method. Main outcome measure for CUSUM competency was a composite binary outcome for surgical success, i.e. watertight repair, operation time ≤ 180 min and Objective-Structured-Assessment-of-Technical-Skills (OSATS) score ≥ 18/25. Construct validity was first confirmed since competency levels of novices and experts during their six first cases using both methods were significantly different. Criterion validity was also established as 33 consecutive procedures were needed for novices to reach competency using learning curve CUSUM, which is a number comparable to that of clinical fSB-repair. Finally, we surveyed expert fetal surgeons worldwide to assess face and content validity. Respondents (26/49; 53%) confirmed it with ≥ 71% of scores for overall realism ≥ 4/7 and usefulness ≥ 3/5. We propose to use our high-fidelity model to determine and shorten the learning curve of laparoscopic fetal surgeons and retain operative skills.

Funder

Wellcome Trust

Engineering and Physical Sciences Research Council

Fonds Wetenschappelijk Onderzoek

Erasmus Programme of the European Union

Fulbright Research grant

Great Ormond Street Hospital Charity

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3