Synthesis, characterization, and lead removal efficiency of orange peel powder and orange peel powder doped iron (III) oxide-hydroxide

Author:

Praipipat PornsawaiORCID,Ngamsurach Pimploy,Joraleeprasert Tanyaporn

Abstract

AbstractLead contamination in wastewater causes toxicity to aquatic life, the environment, and water quality, and it causes many human dysfunctions and diseases. Thus, it is necessary to remove lead from wastewater before discharging it into the environment. Orange peel powder (OP) and orange peel powder doped iron (III) oxide-hydroxide (OPF) were synthesized, characterized, and investigated lead removal efficiencies by batch experiments, adsorption isotherms, kinetics, and desorption experiments. The specific surface area of OP and OPF were 0.431 and 0.896 m2/g, and their pore sizes were 4.462 and 2.575 nm, respectively which OPF had a higher surface area than OP, whereas its pore size was smaller than OP. They were semi-crystalline structures that presented the specific cellulose peaks, and OPF also detected the specific iron (III) oxide-hydroxide peaks. The surface morphologies of OP and OPF were irregular and porous surfaces. Carbon (C), oxygen (O), calcium (Ca), O–H, C–H, C=C, C–O, C=O, and –COOH were observed in both materials. The pHpzc of OP and OPF were 3.74 and 4.46. For batch experiments, OPF demonstrated a higher lead removal efficiency than OP because of spending less on material dosage than OP, and OPF demonstrated high lead removal by more than 95% while OP could remove lead at only 67%. Thus, the addition of iron (III) oxide-hydroxide helped to increase material efficiency for lead adsorption. Both materials corresponded to the Freundlich model relating to physiochemical adsorption, and they also corresponded to a pseudo-second-order kinetic model relating to a chemisorption process. Moreover, both materials could be reusable for more than 5 cycles for lead adsorption of more than 55%. Therefore, OPF was potential material to apply for lead removals in industrial applications.

Funder

Office of the Higher Education Commission and The Thailand Research Fund grant

Coordinating Center for Thai Government Science and Technology Scholarship Students (CSTS) and National Science and Technology Development Agency (NSTDA) Fund

Research and Technology Transfer Affairs of Khon Kaen University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3