Author:
Islam A. S. M. Jannatul,Hasan Md. Sayed,Islam Md. Sherajul,Bhuiyan Ashraful G.,Stampfl Catherine,Park Jeongwon
Abstract
AbstractCrystal deformation mechanisms and mechanical behaviors in semiconductor nanowires (NWs), in particular ZnSe NWs, exhibit a strong orientation dependence. However, very little is known about tensile deformation mechanisms for different crystal orientations. Here, the dependence of crystal orientations on mechanical properties and deformation mechanisms of zinc-blende ZnSe NWs are explored using molecular dynamics simulations. We find that the fracture strength of [111]-oriented ZnSe NWs shows a higher value than that of [110] and [100]-oriented ZnSe NWs. Square shape ZnSe NWs show greater value in terms of fracture strength and elastic modulus compared to a hexagonal shape at all considered diameters. With increasing temperature, the fracture stress and elastic modulus exhibit a sharp decrease. It is observed that the {111} planes are the deformation planes at lower temperatures for the [100] orientation; conversely, when the temperature is increased, the {100} plane is activated and contributes as the second principal cleavage plane. Most importantly, the [110]-directed ZnSe NWs show the highest strain rate sensitivity compared to the other orientations due to the formation of many different cleavage planes with increasing strain rates. The calculated radial distribution function and potential energy per atom further validates the obtained results. This study is very important for the future development of efficient and reliable ZnSe NWs-based nanodevices and nanomechanical systems.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献