Numerical investigation of effects of tongue articulation and velopharyngeal closure on the production of sibilant [s]

Author:

Lu HsuehJui,Yoshinaga Tsukasa,Li ChungGang,Nozaki Kazunori,Iida Akiyoshi,Tsubokura Makoto

Abstract

AbstractA numerical simulation of sibilant /s/ production with the realistically moving vocal tract was conducted to investigate the flow and acoustic characteristics during the articulation process of velopharyngeal closure and tongue movement. The articulation process was simulated from the end of /u/ to the middle of /s/ in the Japanese word /usui/, including the tongue elevation and the velopharyngeal valve closure. The time-dependent vocal tract geometry was reconstructed from the computed tomography scan. The moving immersed boundary method with the hierarchical structure grid was adopted to approach the complex geometry of the human speech organs. The acoustic characteristics during the co-articulation process were observed and consistent with the acoustic measurement for the subject of the scan. The further simulations with the different closing speeds of the velopharyngeal closure showed that the far-field sound during the co-articulation process was amplified with the slower closing case, and the velum closure speed was inverse proportional to the sound amplitude with the slope value of − 35.3 dB s/m. This indicates possible phonation of indistinguishable aeroacoustics sound between /u/ and /s/ with slower velopharyngeal closure.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3