Author:
Kösters Till Lennart,von Schweinitz Arne Graf,Heere Michael,Friedrichs Jens,Gao Xin
Abstract
AbstractProton exchange membrane fuel cells (PEMFCs) are seen as one possible future means of driving the change towards a zero-emission society. In a civil aircraft, fuel cell systems can have multiple potential benefits, such as reduced noise, lowered emissions and higher fuel economy compared to jet aircraft. For controlling the fuel cell temperature, thermal management systems are required which can be optimized for aircraft applications regarding their weight and reliability. In this work, a simplified and light-weight thermal management system relying on hydrogen cooling is presented and analysed. To investigate the feasibility, a test rig and a three-dimensional, singular channel model in ANSYS Fluent were designed. Fuel cell temperature could be maintained within the set threshold in the model and the test rig, thus showing that controlling the fuel cell temperature via the hydrogen reactant flow is a viable alternative thermal management system. Results from the model indicate that both the hydrogen mass flow and hydrogen inlet temperature should be used to control the fuel cell temperature. Furthermore, operating the fuel cell at medium to low current densities is favourable for hydrogen cooling. Future studies will explore alternate flow field designs to facilitate thermal management system relying on hydrogen.
Funder
Deutsche Forschungsgemeinschaft
Technische Universität Braunschweig
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献