Nomogram development for predicting ovarian tumor malignancy using inflammatory biomarker and CA-125

Author:

Winarno Gatot Nyarumenteng AdhipurnawanORCID,Harsono Ali Budi,Suardi Dodi,Salima Siti,Mantilidewi Kemala Isnainiasih,Bayuaji Hartanto,Mulyantari Ayu Insafi,Yulianto Fajar Awalia,Susiarno Hadi

Abstract

AbstractGlobal challenges in ovarian cancer underscore the need for cost-effective screening. This study aims to assess the role of pretreatment Neutrophil-to-Lymphocyte Ratio (NLR), Lymphocyte-to-Monocyte-Ratio (LMR), Platelet-to-Lymphocyte Ratio (PLR), and CA-125 in distinguishing benign and malignant ovarian tumors, while also constructing nomogram models for distinguish benign and malignant ovarian tumor using inflammatory biomarkers and CA-125. This is a retrospective study of 206 ovarian tumor patients. We conducted bivariate analysis to compare mean values of CA-125, LMR, NLR, and PLR with histopathology results. Multiple regression logistic analysis was then employed to establish predictive models for malignancy. NLR, PLR, and CA-125 exhibited statistically higher levels in malignant ovarian tumors compared to benign ones (5.56 ± 4.8 vs. 2.9 ± 2.58, 278.12 ± 165.2 vs. 180.64 ± 89.95, 537.2 ± 1621.47 vs. 110.08 ± 393.05, respectively), while lower LMR was associated with malignant tumors compared to benign (3.2 ± 1.6 vs. 4.24 ± 1.78, p = 0.0001). Multiple logistic regression analysis revealed that both PLR and CA125 emerged as independent risk factors for malignancy in ovarian tumors (P(z) 0.03 and 0.01, respectively). Utilizing the outcomes of multiple regression logistic analysis, a nomogram was constructed to enhance malignancy prediction in ovarian tumors. In conclusion, our study emphasizes the significance of NLR, PLR, CA-125, and LMR in diagnosing ovarian tumors. PLR and CA-125 emerged as independent risk factors for distinguishing between benign and malignant tumors. The nomogram model offers a practical way to enhance diagnostic precision.

Funder

University of Padjadjaran

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3