Supervised machine learning classification of psychosis biotypes based on brain structure: findings from the Bipolar-Schizophrenia network for intermediate phenotypes (B-SNIP)

Author:

Koen Joshua D.,Lewis Leslie,Rugg Michael D.,Clementz Brett A.,Keshavan Matcheri S.,Pearlson Godfrey D.,Sweeney John A.,Tamminga Carol A.,Ivleva Elena I.

Abstract

AbstractTraditional diagnostic formulations of psychotic disorders have low correspondence with underlying disease neurobiology. This has led to a growing interest in using brain-based biomarkers to capture biologically-informed psychosis constructs. Building upon our prior work on the B-SNIP Psychosis Biotypes, we aimed to examine whether structural MRI (an independent biomarker not used in the Biotype development) can effectively classify the Biotypes. Whole brain voxel-wise grey matter density (GMD) maps from T1-weighted images were used to train and test (using repeated randomized train/test splits) binary L2-penalized logistic regression models to discriminate psychosis cases (n = 557) from healthy controls (CON, n = 251). A total of six models were evaluated across two psychosis categorization schemes: (i) three Biotypes (B1, B2, B3) and (ii) three DSM diagnoses (schizophrenia (SZ), schizoaffective (SAD) and bipolar (BD) disorders). Above-chance classification accuracies were observed in all Biotype (B1 = 0.70, B2 = 0.65, and B3 = 0.56) and diagnosis (SZ = 0.64, SAD = 0.64, and BD = 0.59) models. However, the only model that showed evidence of specificity was B1, i.e., the model was able to discriminate B1 vs. CON and did not misclassify other psychosis cases (B2 or B3) as B1 at rates above nominal chance. The GMD-based classifier evidence for B1 showed a negative association with an estimate of premorbid general intellectual ability, regardless of group membership, i.e. psychosis or CON. Our findings indicate that, complimentary to clinical diagnoses, the B-SNIP Psychosis Biotypes may offer a promising approach to capture specific aspects of psychosis neurobiology.

Funder

U.S. Department of Health & Human Services | NIH | National Institute on Aging

Aging Mind Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3