Inoculation of Ensifer fredii strain LP2/20 immobilized in agar results in growth promotion and alteration of bacterial community structure of Chinese kale planted soil

Author:

Pongsilp NeelawanORCID,Nimnoi PongraweeORCID

Abstract

AbstractIn our former research, we succeeded in using agar, alginate, and perlite as immobilization materials to maintain long-term survival of the inoculant, Ensifer fredii LP2/20, in a controlled glasshouse. Therefore the information on the establishment and activity of the inoculant to promote plant growth under field conditions, the effects of the inoculant on the soil microbial communities and specific microbial taxa, and the association between the inoculant and soil elements merit further studies. Here, we found that agar was the most suitable material that supported the establishment of the inoculant under field conditions. RNA-based analysis showed that E. fredii LP2/20 immobilized in agar was still metabolically active at day 50 after being introduced into soil. Inoculation of E. fredii LP2/20 immobilized in agar conferred the highest plant dry weight (up to 89.94%) and all plant elements including total N (9.55%), P (17.94%), K (68.42%), Ca (39.77%), Mg (30.76%), Fe (29.85%), and Zn (22.44%). Inoculation of E. fredii LP2/20 immobilized in agar increased soil chemicals including soil organic matter (99.02%), total N (272.48%), P (31.75%), K (52.74%), Fe (51.06%), and Zn (63.10%). High-throughput next-generation sequencing of bacterial 16S rRNA amplicons showed that the Proteobacteria, Acidobacteria, Bacteroidetes, and Firmicutes were dominant phyla in Chinese kale field soil. Inoculation of E. fredii LP2/20 significantly affected the soil bacterial community structure by decreasing total bacterial richness and diversity. The numbers of alpha- and gamma-Proteobacteria were significantly increased while the number of delta-Proteobacteria was significantly decreased due to E. fredii LP2/20 establishment. Soil total P, K, and Ca and soil pH were the important factors that shaped the soil bacterial community composition.

Funder

Kasetsart University Research and Development Institute

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3