Author:
Csizmadia Gábor,Liszkai-Peres Krisztina,Ferdinandy Bence,Miklósi Ádám,Konok Veronika
Abstract
AbstractHuman activity recognition (HAR) using machine learning (ML) methods has been a continuously developed method for collecting and analyzing large amounts of human behavioral data using special wearable sensors in the past decade. Our main goal was to find a reliable method that could automatically detect various playful and daily routine activities in children. We defined 40 activities for ML recognition, and we collected activity motion data by means of wearable smartwatches with a special SensKid software. We analyzed the data of 34 children (19 girls, 15 boys; age range: 6.59–8.38; median age = 7.47). All children were typically developing first graders from three elementary schools. The activity recognition was a binary classification task which was evaluated with a Light Gradient Boosted Machine (LGBM) learning algorithm, a decision tree based method with a threefold cross validation. We used the sliding window technique during the signal processing, and we aimed at finding the best window size for the analysis of each behavior element to achieve the most effective settings. Seventeen activities out of 40 were successfully recognized with AUC values above 0.8. The window size had no significant effect. In summary, the LGBM is a very promising solution for HAR. In line with previous findings, our results provide a firm basis for a more precise and effective recognition system that can make human behavioral analysis faster and more objective.
Funder
National Research, Development and Innovation Office
Magyar Tudományos Akadémia
Eötvös Loránd University
Publisher
Springer Science and Business Media LLC
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献