Physiological and proteomic changes of Castanopsis fissa in response to drought stress

Author:

Li Chaonan,Chen Sanxiong,Wang Yi

Abstract

AbstractCastanopsis fissa is a native, broadleaf tree species in Guangdong with characteristics of barrenness and fast growth and is often used as a pioneer species for vegetation restoration with excellent ecological benefits. To explore the response of C.fissa to drought, this study investigated the drought tolerance mechanism of C.fissa using physiological and proteomic assessments. Using a potted continuous drought experimental method with normal water supply as a control, we measured photosynthetic parameters, antioxidant enzyme activities, and osmoregulatory substances of C. fissa in response to drought stress for 1 to 4 weeks, respectively. In addition, we used TMT quantitative proteomics to identify differentially expressed proteins (DEPs) between the drought-stress-treated C. fissa leaves and the control leaves. With the extension of drought stress time, the photosynthetic indexes and peroxidase (POD) activity of C. fissa leaves showed a decreasing trend. The malondialdehyde (MDA) content; superoxide Dismutase (SOD) and catalase (CAT) activities; and proline (Pro), soluble sugar (SS) and soluble protein (SP) contents showed an overall increasing trend, all of which reached significant differences at 4 w of stress. We identified 177 and 529 DEPs in the 2 and 4 weeks drought-stress leaves, respectively, in reference to the control leaves. These DEPs were closely related to physiological metabolic processes such as photosynthesis, energy and carbohydrate metabolism, stress response and defense, transcriptional regulation, and signal ion transduction. Drought stress mainly affects photosynthesis, carbohydrate metabolism, and protein synthesis and degradation in C. fissa leaves. At 2 weeks of stress, the expression of carbon metabolism, pyruvate metabolism and ribosome-related proteins was significantly changed, however, and at 4 weeks of stress, protein processing in the endoplasmic reticulum and spliceosome-related proteins were significantly increased in plant leaves. To alleviate the effect of water unavailability, the drought-stressed C.fissa leaves increased its oxidative protective enzyme system to eliminate excess reactive oxygen species (ROS) and also increased its Pro and SP contents to maintain the intracellular osmotic potential balance.

Funder

Guangdong Forestry Bureau Provincial Ecological Public Welfare Forest Benefit Compensation Funds Provincial Coordination Funds Project

GuangZhou Basic and Applied Basic Research Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3