Deep learning-based hemorrhage detection for diabetic retinopathy screening

Author:

Aziz Tamoor,Charoenlarpnopparut Chalie,Mahapakulchai Srijidtra

Abstract

AbstractDiabetic retinopathy is a retinal compilation that causes visual impairment. Hemorrhage is one of the pathological symptoms of diabetic retinopathy that emerges during disease development. Therefore, hemorrhage detection reveals the presence of diabetic retinopathy in the early phase. Diagnosing the disease in its initial stage is crucial to adopt proper treatment so the repercussions can be prevented. The automatic deep learning-based hemorrhage detection method is proposed that can be used as the second interpreter for ophthalmologists to reduce the time and complexity of conventional screening methods. The quality of the images was enhanced, and the prospective hemorrhage locations were estimated in the preprocessing stage. Modified gamma correction adaptively illuminates fundus images by using gradient information to address the nonuniform brightness levels of images. The algorithm estimated the locations of potential candidates by using a Gaussian match filter, entropy thresholding, and mathematical morphology. The required objects were segmented using the regional diversity at estimated locations. The novel hemorrhage network is propounded for hemorrhage classification and compared with the renowned deep models. Two datasets benchmarked the model’s performance using sensitivity, specificity, precision, and accuracy metrics. Despite being the shallowest network, the proposed network marked competitive results than LeNet-5, AlexNet, ResNet50, and VGG-16. The hemorrhage network was assessed using training time and classification accuracy through synthetic experimentation. Results showed promising accuracy in the classification stage while significantly reducing training time. The research concluded that increasing deep network layers does not guarantee good results but rather increases training time. The suitable architecture of a deep model and its appropriate parameters are critical for obtaining excellent outcomes.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference38 articles.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3