Comparison of thermal, rheological properties of Finnish Pinus sp. and Brazilian Eucalyptus sp. black liquors and their impact on recovery units

Author:

Nuncira Jesús,Manoel Getúlio Francisco,Ribas Batalha Larisse Ap.,Gonçalves Lindomar Matias,Mendoza-Martinez Clara,Cardoso Marcelo,Vakkilainen Esa K.

Abstract

AbstractBlack liquor (BL) is the major bioproduct and biomass fuel in pulp mill processes. However, the high viscosity of BL makes it a challenging material to work with, resulting in issues with evaporators and heat exchangers during its transport and processing. The thermal and rheological properties of BLs from Pinus sp. (PBL) and Eucalyptus sp. (EBL) were studied. FTIR spectra revealed the presence of the characteristic functional groups and the chemical composition in liquors. TGA/DTG curves showed three characteristic degradation stages related to evaporation of water, pyrolysis of organic groups, and condensation of char. Rheologically, liquors are classified as non-Newtonian and with comportment pseudoplastic. Their rheological dynamic shear properties included a linear viscoelastic region up to 1% shear strain, while frequency sweeps showed that storage modulus (Gʹ) > loss modulus (Gʹʹ), thus confirming the solid-like behavior of both BLs. The rheological study demonstrated that increasing the temperature and oscillatory deformations of PBL and EBL decreased their degree of viscoelasticity, which could favor their pumping and handling within the pulp mill, as well as the droplet formation and swelling characteristics in the recovery furnace.

Publisher

Springer Science and Business Media LLC

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3