Lack of ITS sequence homogenization in Erysimum species (Brassicaceae) with different ploidy levels

Author:

Osuna-Mascaró Carolina,de Casas Rafael Rubio,Berbel Modesto,Gómez José M.,Perfectti Francisco

Abstract

AbstractThe internal transcribed spacers (ITS) exhibit concerted evolution by the fast homogenization of these sequences at the intragenomic level. However, the rate and extension of this process are unclear and might be conditioned by the number and divergence of the different ITS copies. In some cases, such as hybrid species and polyploids, ITS sequence homogenization appears incomplete, resulting in multiple haplotypes within the same organism. Here, we studied the dynamics of concerted evolution in 85 individuals of seven plant species of the genus Erysimum (Brassicaceae) with multiple ploidy levels. We estimated the rate of concerted evolution and the degree of sequence homogenization separately for ITS1 and ITS2 and whether these varied with ploidy. Our results showed incomplete sequence homogenization, especially for polyploid samples, indicating a lack of concerted evolution in these taxa. Homogenization was usually higher in ITS2 than in ITS1, suggesting that concerted evolution operates more efficiently on the former. Furthermore, the hybrid origin of several species appears to contribute to the maintenance of high haplotype diversity, regardless of the level of ploidy. These findings indicate that sequence homogenization of ITS is a dynamic and complex process that might result in varying intra- and inter-genomic diversity levels.

Funder

Ministerio de Economía y Competitividad

Ministerio de Ciencia y Tecnología

FEDER

Consejería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3