Manure application increased crop yields by promoting nitrogen use efficiency in the soils of 40-year soybean-maize rotation

Author:

Hua Wei,Luo Peiyu,An Ning,Cai Fangfang,Zhang Shiyu,Chen Kun,Yang Jinfeng,Han Xiaori

Abstract

AbstractIt is great of importance to better understand the effects of the long-term fertilization on crop yields, soil properties and nitrogen (N) use efficiency in a rotation cropping cultivation system under the conditions of frequent soil disturbance. Therefore, a long-term field experiment of 40 years under soybean-maize rotation was performed in a brown soil to investigate the effects of inorganic and organic fertilizers on crop yields, soil properties and nitrogen use efficiency. Equal amounts of 15N-labelled urea with 20.8% of atom were used and uniformly applied into the micro-plots of the treatments with N, NPK, M1NPK, M2NPK before soybean sowing, respectively. Analyses showed that a total of 18.3–32.5% of applied N fertilizer was taken up by crops in the first soybean growing season, and that the application of manure combining with chemical fertilizer M2NPK demonstrated the highest rate of 15N recovery and increased soil organic matter (SOM) and Olsen phosphorus (Olsen P), thereby sustaining a higher crop yield and alleviating soil acidification. Data also showed that no significant difference was observed in the 15N recovery from residue N in the second maize season plant despite of showing a lower 15N recovery compared with the first soybean season. The recovery rates of 15N in soils were ranged from 38.2 to 49.7% by the end of the second cropping season, and the residuals of 15N distribution in soil layers revealed significant differences. The M2NPK treatment demonstrated the highest residual amounts of 15N, and a total of 50% residual 15N were distributed in a soil layer of 0–20 cm. Our results showed that long-term application of organic fertilizers could effectively promote N use efficiency by increasing SOM and improving soil fertility, and thus leading to an increase in crop yields. This study will provide a scientific reference and guidance for improving soil sustainable productivity by manure application.

Funder

National Natural Science Foundation of Chin

China Agriculture Research Syste

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3