Importance of surface morphology on secondary electron emission: a case study of Cu covered with carbon, carbon pairs, or graphitic-like layers

Author:

Diaz L.,Karkash A.,Alsharari S.,Joshi R. P.,Schamiloglu E.,Sanati M.

Abstract

AbstractUnderstanding the relationship between surface adsorbates and secondary electronic emission is critical for a variety of technologies, since the secondary electrons can have deleterious effects on the operation of devices. The mitigation of such phenomena is desirable. Here, using the collective efforts of first-principles, molecular dynamics, and Monte Carlo simulations, we studied the effects of a variety of carbon adsorbates on the secondary electron emission of Cu (110). It was demonstrated that the adsorption of atomic C and C$$_2$$ 2 pair layers can both reduce and increase the number of secondary electrons depending on the adsorbate coverage. It was shown that under electron irradiation, the C–Cu bonds can be dissociated and reformed into C$$_2$$ 2 pairs and graphitic-like layers, in agreement with experimental observation. It was verified that the lowest secondary electron emission was due to the formation of the graphitic-like layer. To understand the physical reason for changes in number of secondary electrons for different systems from an electronic structure perspective, two-dimensional potential energy surfaces and charge density contour plots were calculated and analyzed. It was shown that the changes are strongly influenced by the Cu surface morphology and depends highly on the nature of the interactions between the surface Cu and C atoms.

Funder

Air Force Office of Scientific Research

Office of Naval Research

AFOSR MURI Grant

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3