Selective modulation of cortical population dynamics during neuroprosthetic skill learning

Author:

Zippi Ellen L.,You Albert K.,Ganguly Karunesh,Carmena Jose M.

Abstract

AbstractBrain-machine interfaces (BMIs) provide a framework for studying how cortical population dynamics evolve over learning in a task in which the mapping between neural activity and behavior is precisely defined. Learning to control a BMI is associated with the emergence of coordinated neural dynamics in populations of neurons whose activity serves as direct input to the BMI decoder (direct subpopulation). While previous work shows differential modification of firing rate modulation in this population relative to a population whose activity was not directly input to the BMI decoder (indirect subpopulation), little is known about how learning-related changes in cortical population dynamics within these groups compare.To investigate this, we monitored both direct and indirect subpopulations as two macaque monkeys learned to control a BMI. We found that while the combined population increased coordinated neural dynamics, this increase in coordination was primarily driven by changes in the direct subpopulation. These findings suggest that motor cortex refines cortical dynamics by increasing neural variance throughout the entire population during learning, with a more pronounced coordination of firing activity in subpopulations that are causally linked to behavior.

Funder

National Science Foundation

National Institute of Health, United States

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3