Author:
Fagbemi Olufisayo Ibukun,Olayinka Abel Idowu,Oladunjoye Michael Adeyinka,Edigbue Paul Irikefe
Abstract
AbstractThis study focuses on the comprehensive reservoir characterization of the ‘Kukih’ Field within the onshore northeastern Niger Delta region, Nigeria. The absence of its detailed description with delineated reservoir properties, lateral continuity, and their use to identify potential reservoir quality and heterogeneity necessitated this study. Integrating well log and 3D seismic data, the investigation aims to elucidate reservoir properties, lithofacies, and depositional environments to unravel hydrocarbon potential. The geological setting, encompassing the Agbada Formation of Early and Middle Miocene age, is scrutinized through detailed geologic analysis. Petrophysical evaluation of four well logs (Kukih-1, Kukih-2, Kukih-3, and Kukih-4) facilitated the determination of key parameters such as shale volume, effective porosity, and water saturation. Seismic interpretation further enriched the structural characterization of the field. Results showcase three predominant reservoir sands (A, B, and C) with distinct lithofacies and thickness variations. Effective porosity ranges from Fair to Excellent, with permeability exhibiting high values for hydrocarbon reservoir potential. Water saturation trends, lithofacies distributions, and structural features were illuminated through iso-parametric maps and seismic analyses. Depositional environments were inferred through facies analysis, revealing the presence of funnel-, cylinder-, and bell-shaped successions that hint at intricate marine sedimentary processes. Challenges owing to limited core data were acknowledged, and the integration of methodologies emerged as a pivotal strategy for enhanced reservoir understanding. This study underscores the ‘Kukih’ Field's hydrocarbon potential, accentuating the significance of multidisciplinary approaches in deciphering complex reservoir systems. In light of the petrophysical analysis derived from the well logs and the identification of structural highs through the structural maps, this study recommends the drilling of unexplored zones exhibiting promising structural characteristics.
Publisher
Springer Science and Business Media LLC