Author:
Hsu Che Ju,Singh Bhupendra Pratap,Selvaraj Pravinraj,Antony Mareena,Manohar Rajiv,Huang Chi Yen
Abstract
AbstractIn this study, the response time of a 4 mm-aperture hole-patterned liquid crystal (HLC) lens has been significantly improved with doping of N-benzyl-2-methyl-4-nitroaniline (BNA) and rutile titanium dioxide nanoparticle (TiO2 NP) nanocomposite. The proposed HLC lens provides the focus and defocus times that are 8.5× and 14× faster than the pristine HLC lens, respectively. Meanwhile, the focus and defocus times of the proposed HLC lens reach the order of millisecond. Result shows that the synergistic effect of BNA and TiO2 NP induces a 78% decrement in the viscosity of pristine LC mixture that significantly shortens the focus and defocus times of HLC lens. The remarkable decrement in viscosity is mainly attributed to spontaneous polarization electric fields from the permanent dipole moments of the additives. Besides, the strengthened electric field surrounding TiO2 NP assists in decreasing the focus time of HLC lens. The focus and defocus times of HLC lens are related to the wavefront (or phase profile) bending speed. The time-dependent phase profiles of the HLC lenses with various viscosities are calculated. This result shows the decrease in wavefront bending time is not simply proportional to viscosity decrement. Furthermore, the proposed HLC lens emerges a larger tunable focus capability within smaller voltage interval than the pristine HLC lens.
Funder
Ministry of Science and Technology, Taiwan
Publisher
Springer Science and Business Media LLC
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献