Behavior of colloidal gels made of thermoresponsive anisotropic nanoparticles

Author:

Yang Long,Thérien-Aubin Héloïse

Abstract

AbstractAmongst colloidal gels, those designed by the assembly of anisotropic colloidal particles tend to form fibrillar gels and are attracting interest as artificial cell growth environments since they have a structure reminiscent of biological extracellular matrices. Their properties can be tuned by controlling the size, shape, and rigidity of the nanoparticles used during their formation. Herein, the relationship between the physical and mechanical properties of the nanocolloidal building blocks and the properties of the resulting gels is investigated. Thermoresponsive particles with different aspect ratios and controlled rigidity were prepared, and the gelation and the properties of the resulting gels were studied. The results show how the aspect ratio and rigidity of polymer colloids tune the properties of the gels. An increase in the aspect ratio of the nanocolloid used led to a sol–gel transition observed at lower particle concentration, but an increase in the rigidity of the nanocolloids delayed the sol–gel transition to higher concentration. However, at a constant concentration, increases in the anisotropy produced gels with higher modulus and lower yield strain. Similarly, an increase in rigidity of the colloids increased the modulus and reduced the yield strain of the resulting gels.

Funder

China Scholarship Council

Max Planck - University of Twente Center for Complex Fluid Dynamics

Max-Planck-Gesellschaft

Max Planck Institute for Polymer Research

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3