Fresh aquaculture sludge management with black soldier fly (Hermetia illucens L.) larvae: investigation on bioconversion performances

Author:

Rossi Giacomo,Ojha Shikha,Müller-Belecke Andreas,Schlüter Oliver K.

Abstract

AbstractAquaculture solid waste (ASW) is a nutrient rich material that can pose a significant environment challenge if not properly managed. This study investigated the potential of black soldier fly (BSF) larvae in converting this waste into biomass. Five substrates comprising chicken feed supplemented with varying proportions of fresh ASW (0%, 25%, 50%, 75%, 100%) were formulated and evaluated for larval growth and waste bioconversion efficiency. High nutrients retention (N: 23.25 ± 1.40%; C: 21.94 ± 0.99%; S: 12.20 ± 1.33%) and feed conversion ratio (1.78 ± 0.08) were detected on substrate 100ASW, although the limited feeding rate (114.54 ± 5.38 mg dry substrate/larvae) and the high amount of indigestible fibres (ADF = 15.87 ± 0.24%; ADL = 6.36 ± 0.17%) were translated to low larval growth (final larval average weight: 66.17 ± 1.81 mg). Decreasing ASW content resulted in reduced fibres and ash, increase in non-fibrous carbohydrates and C/N ratio, and improved larval growth and substrate utilization. However, high larval metabolic activity suggested higher nutrients loss to the environment. Substrate 75ASW demonstrated the best performances in terms of larval production (final larval average weight: 176.30 ± 12.12 mg), waste reduction (substrate reduction corrected by percentage of ASW: 26.76 ± 0.86%) and nutrients assimilation (N: 22.14 ± 1.14%; C: 15.29 ± 0.82%; S: 15.40 ± 0.99%). This substrate closely aligned with optimal BSF rearing substrates reported in literature. Overall, this study highlights the potential of BSF larvae in managing fresh ASW, offering a dual benefit of waste reduction and insect biomass production.

Funder

German Federal Ministry of Food and Agriculture

Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB)

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3