Weakly-Emergent Strain-Dependent Properties of High Field Superconductors

Author:

Branch Paul,Tsui Yeekin,Osamura Kozo,Hampshire Damian P.ORCID

Abstract

Abstract All superconductors in high field magnets operating above 12 T are brittle and subjected to large strains because of the differential thermal contraction between component parts on cool-down and the large Lorentz forces produced in operation. The continuous scientific requirement for higher magnetic fields in superconducting energy-efficient magnets means we must understand and control the high sensitivity of critical current density Jc to strain ε. Here we present very detailed Jc(B, θ, T, ε) measurements on a high temperature superconductor (HTS), a (Rare−Earth)Ba2Cu3O7−δ (REBCO) coated conductor, and a low temperature superconductor (LTS), a Nb3Sn wire, that include the very widely observed inverted parabolic strain dependence for Jc(ε). The canonical explanation for the parabolic strain dependence of Jc in LTS wires attributes it to an angular average of an underlying intrinsic parabolic single crystal response. It assigns optimal superconducting critical parameters to the unstrained state which implies that Jc(ε) should reach its peak value at a single strain (ε = εpeak), independent of field B, and temperature T. However, consistent with a new analysis, the high field measurements reported here provide a clear signature for weakly-emergent behaviour, namely εpeak is markedly B, (field angle θ for the HTS) and T dependent in both materials. The strain dependence of Jc in these materials is termed weakly-emergent because it is not qualitatively similar to the strain dependence of Jc of any of their underlying component parts, but is amenable to calculation. We conclude that Jc(ε) is an emergent property in both REBCO and Nb3Sn conductors and that for the LTS Nb3Sn conductor, the emergent behaviour is not consistent with the long-standing canonical explanation for Jc(ε).

Funder

RCUK | Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3