Rock slope stability analysis of a limestone quarry in a case study of a National Cement Factory in Eastern Ethiopia

Author:

Bezie Getaneh,Chala Endalu Tadele,Jilo Nagessa Zerihun,Birhanu Sisay,Berta Kalkidan Kefale,Assefa Siraj Mulugeta,Gissila Biruk

Abstract

AbstractRock slope failures pose significant challenges in geotechnical engineering due to the intricate nature of rock masses, discontinuities, and various destabilizing factors during and after excavation. In mining industries, such as national cement factories, multi-benched excavation systems are commonly used for quarrying. However, cut slopes are often designed with steep angles to maximize economic benefits, inadvertently neglecting critical slope stability issues. This oversight can lead to slope instability, endangering human lives and property. This study focuses on analyzing the stability of existing quarry cut slopes, estimating their final depth, and conducting a parametric study of geometric profiles including bench height, width, face angle, and rump width. Kinematic analysis helps identify potential failure modes. The results reveal that the existing quarry cut slope is prone to toppling, wedge failure, and planar failure with probabilities of 42.68%, 19.53%, and 14.23%, respectively. Numerical modeling using the finite element method (Phase2 8.0 software) was performed under both static and dynamic loading conditions. The shear reduction factor (SRF) of the existing quarry cut slope was 1.01 under static loading and 0.86 under dynamic loading. Similarly, for the estimated depth, the SRF was 0.82 under static loading and 0.7 under dynamic loading. These values indicate that the slope stability falls significantly below the minimum acceptable SRF, rendering it unstable. The parametric study highlights the face angle of the bench as the most influential parameter in slope stability. By adjusting the bench face angle from 90° to 75°, 70°, and 65°, the SRF increased by 31.6%, 35.4%, and 37.9%, respectively. Among these, a 70° bench face angle is recommended for optimal stability with a SRF of 1.27 under static loading and 1.18 under dynamic loading.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3