Author:
Bhattacharjee Bijoya,Ali Akib,Tuteja Narendra,Gill Sarvajeet,Pattanayak Arunava
Abstract
AbstractAluminium (Al) is the third most abundant element in the Earth's crust. Globally, acidic soil occupies 30–40% of ice-free land areas; Al toxicity is a major threat to crops. The first symptom of Al toxicity is the inhibition of root growth followed by poor root hair development, swollen root apices, necrosis of leaves and reduced yield. Although Rice (Oryza sativa) is an Al toxicity tolerant crop, it shows considerable variations among rice genotypes to Al exposure. Therefore, it is pertinent to understand Al toxicity and underlying mechanisms for Al tolerance in Rice. In the present study, 63 rice genotypes screened under Al stress showed significant variations of root growth. Expression stability of endogenous control genes (ECGs) revealed sulphite reductase (SR) as the most stable ECG that can be used as a reference gene for quantitative real-time PCR (qRT-PCR). Expression patterns of Al-responsive genes suggest genes associated with cytoskeletal dynamics, metabolism, and ion transporter could play significant roles in Al adaptation and tolerance in rice. The results showed Motodhan, Vietnam-1, Yimyu and N-861 as Al-toxicity tolerant, while Lespah, RCPL-13, VL-31329, and UPR2919-141-1 as most Al-sensitive genotypes among the studied rice lines cultivated in North-East India.
Funder
This work was supported by ICAR NPTC Project and Institute Research Funds from ICAR Research complex for NEH, Umiam, India
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献