Machine learning for morbid glomerular hypertrophy

Author:

Ushio Yusuke,Kataoka Hiroshi,Iwadoh Kazuhiro,Ohara Mamiko,Suzuki Tomo,Hirata Maiko,Manabe Shun,Kawachi Keiko,Akihisa Taro,Makabe Shiho,Sato Masayo,Iwasa Naomi,Yoshida Rie,Hoshino Junichi,Mochizuki Toshio,Tsuchiya Ken,Nitta Kosaku

Abstract

AbstractA practical research method integrating data-driven machine learning with conventional model-driven statistics is sought after in medicine. Although glomerular hypertrophy (or a large renal corpuscle) on renal biopsy has pathophysiological implications, it is often misdiagnosed as adaptive/compensatory hypertrophy. Using a generative machine learning method, we aimed to explore the factors associated with a maximal glomerular diameter of ≥ 242.3 μm. Using the frequency-of-usage variable ranking in generative models, we defined the machine learning scores with symbolic regression via genetic programming (SR via GP). We compared important variables selected by SR with those selected by a point-biserial correlation coefficient using multivariable logistic and linear regressions to validate discriminatory ability, goodness-of-fit, and collinearity. Body mass index, complement component C3, serum total protein, arteriolosclerosis, C-reactive protein, and the Oxford E1 score were ranked among the top 10 variables with high machine learning scores using SR via GP, while the estimated glomerular filtration rate was ranked 46 among the 60 variables. In multivariable analyses, the R2 value was higher (0.61 vs. 0.45), and the corrected Akaike Information Criterion value was lower (402.7 vs. 417.2) with variables selected with SR than those selected with point-biserial r. There were two variables with variance inflation factors higher than 5 in those using point-biserial r and none in SR. Data-driven machine learning models may be useful in identifying significant and insignificant correlated factors. Our method may be generalized to other medical research due to the procedural simplicity of using top-ranked variables selected by machine learning.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3