The potential of a novel enzyme-based surface plasmon resonance biosensor for direct detection of dopamine

Author:

Jabbari Safoura,Dabirmanesh Bahareh,Daneshjou Sara,Khajeh Khosro

Abstract

AbstractDopamine is one of the significant neurotransmitters and its monitoring in biological fluids is a critical issue in healthcare and modern biomedical technology. Here, we have developed a dopamine biosensor based on surface plasmon resonance (SPR). For this purpose, the carboxymethyl dextran SPR chip was used as a surface to immobilize laccase as a bioaffinity recognition element. Data analysis exhibited that the acidic pH value is the optimal condition for dopamine interaction. Calculated kinetic affinity (KD) (48,545 nM), obtained from a molecular docking study, showed strong association of dopamine with the active site of laccase. The biosensor exhibited a linearity from 0.01 to 189 μg/ml and a lower detection limit of 0.1 ng/ml (signal-to-noise ratio (S/N) = 3) that is significantly higher than the most direct dopamine detecting sensors reported so far. Experiments for specificity in the presence of compounds that can co-exist with dopamine detection such as ascorbic acid, urea and l-dopa showed no significant interference. The current dopamine biosensor with high sensitivity and specificity, represent a novel detection tool that offers a label-free, simple procedure and cost effective monitoring system.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3