Author:
Tavakoli Adib,Maire Jeremie,Brisuda Boris,Crozes Thierry,Motte Jean-François,Saminadayar Laurent,Collin Eddy,Bourgeois Olivier
Abstract
AbstractPractical applications of heat transport control with artificial metamaterials will heavily depend on the realization of thermal diodes/rectifiers, in which thermal conductivity depends on the heat flux direction. Whereas various macroscale implementations have been made experimentally, nanoscales realizations remain challenging and efficient rectification still requires a better fundamental understanding of heat carriers’ transport and nonlinear mechanisms. Here, we propose an experimental realization of a thermal rectifier based on two leads with asymmetric mass gradients separated by a ballistic spacer, as proposed in a recent numerical investigation, and measure its thermal properties electrically with the microbridge technique. We use a Si$$_{3}$$
3
N$$_{4}$$
4
nanobeam on which an asymmetric mass gradient has been engineered and demonstrate that in its current form, this structure does not allow for thermal rectification. We explain this by a combination of too weak asymmetry and non-linearities. Our experimental observations provide important information towards fabricating rigorous thermal rectifiers in the ballistic phonon transport regime, which are expected to open new possibilities for applications in thermal management and quantum thermal devices.
Funder
H2020 Research Infrastructures
FP7 Energy
H2020 Marie Skłodowska-Curie Actions
Agence Nationale de la Recherche
H2020 European Research Council
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献