Binding behavior of receptor binding domain of the SARS-CoV-2 virus and ivermectin

Author:

Gossen Kasidy R.,Zhang Meiyi,Nikolov Zivko L.,Fernando Sandun D.,King Maria D.

Abstract

AbstractThe COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), sparked an international debate on effective ways to prevent and treat the virus. Specifically, there were many varying opinions on the use of ivermectin (IVM) throughout the world, with minimal research to support either side. IVM is an FDA-approved antiparasitic drug that was discovered in the 1970s and was found to show antiviral activity. The objective of this study is to examine the binding behavior and rates of association and dissociation between SARS-CoV-2 receptor binding domain (RBD), IVM, and their combination using aminopropylsilane (APS) biosensors as surrogates for the hydrophobic interaction between the viral protein and human angiotensin-converting enzyme 2 (ACE2) receptors to determine the potential of IVM as a repurposed drug for SARS-CoV-2 prevention and treatment. The IVM, RBD, and combination binding kinetics were analyzed using biolayer interferometry (BLI) and validated with multiple in silico techniques including protein–ligand docking, molecular dynamics simulation, molecular mechanics-generalized Born surface area (MM-GBSA), and principal component analysis (PCA). Our results suggest that with increasing IVM concentrations the association rate with the hydrophobic biosensor increases with a simultaneous decrease in dissociation. Significant kinetic changes to RBD, when combined with IVM, were found only at a concentration a thousand times the approved dosage with minimal changes found over a 35-min time period. Our study suggests that IVM is not an effective preventative or treatment method at the currently approved dosage.

Funder

DHHS-NIH-National Institute of Allergy and Infectious Diseases

National Science Foundation

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3