Author:
Németh Balázs Csaba,Demcsák Alexandra,Geisz Andrea,Sahin-Tóth Miklós
Abstract
AbstractGenetic mutations in pancreatic digestive enzymes may cause protein misfolding, endoplasmic reticulum (ER) stress and chronic pancreatitis. The CPA1 N256K mouse model carries the human p.N256K carboxypeptidase A1 (CPA1) mutation, a classic example of a pancreatitis-associated misfolding variant. CPA1 N256K mice develop spontaneous, progressive chronic pancreatitis with moderate acinar atrophy, acinar-to-ductal metaplasia, fibrosis, and macrophage infiltration. Upregulation of the ER-stress associated pro-apoptotic transcription factor Ddit3/Chop mRNA was observed in the pancreas of CPA1 N256K mice suggesting that acinar cell death might be mediated through this mechanism. Here, we crossed the CPA1 N256K strain with mice containing a global deletion of the Ddit3/Chop gene (Ddit3-KO mice) and evaluated the effect of DDIT3/CHOP deficiency on the course of chronic pancreatitis. Surprisingly, CPA1 N256K x Ddit3-KO mice developed chronic pancreatitis with a similar time course and features as the CPA1 N256K parent strain. In contrast, Ddit3-KO mice showed no pancreas pathology. The observations indicate that DDIT3/CHOP plays no significant role in the development of misfolding-induced chronic pancreatitis in CPA1 N256K mice and this transcription factor is not a viable target for therapeutic intervention in this disease.
Funder
National Institute of Diabetes and Digestive and Kidney Diseases
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献