Inconsistent effects of stochastic resonance on human auditory processing

Author:

Rufener Katharina S.,Kauk Julian,Ruhnau Philipp,Repplinger Stefan,Heil Peter,Zaehle Tino

Abstract

AbstractIt has been demonstrated that, while otherwise detrimental, noise can improve sensory perception under optimal conditions. The mechanism underlying this improvement is stochastic resonance. An inverted U-shaped relationship between noise level and task performance is considered as the signature of stochastic resonance. Previous studies have proposed the existence of stochastic resonance also in the human auditory system. However, the reported beneficial effects of noise are small, based on a small sample, and do not confirm the proposed inverted U-shaped function. Here, we investigated in two separate studies whether stochastic resonance may be present in the human auditory system by applying noise of different levels, either acoustically or electrically via transcranial random noise stimulation, while participants had to detect acoustic stimuli adjusted to their individual hearing threshold. We find no evidence for behaviorally relevant effects of stochastic resonance. Although detection rate for near-threshold acoustic stimuli appears to vary in an inverted U-shaped manner for some subjects, it varies in a U-shaped manner or in other manners for other subjects. Our results show that subjects do not benefit from noise, irrespective of its modality. In conclusion, our results question the existence of stochastic resonance in the human auditory system.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3