Author:
Morais Leonardo Fiusa de,Cavalcante Ana Clara Rodrigues,Aquino Deodato do Nascimento,Nogueira Felipe Hermínio Meireles,Cândido Magno José Duarte
Abstract
AbstractThis study aimed to analyze fragments of rangelands through spectral responses and land cover change by livestock in regions of the Caatinga biome through remote sensing. For spectral behavior, the surface reflectance bidirectional (SRB) and spectral indexes of vegetation were used to verify the ragelands seasonality. Land cover change detection of Ouricuri and Tauá through Landsat-8 images with a 16-day revisit interval, were processed in the Google Earth Engine platform (GEE) and software Quantum GIS version 2.18 (QGIS). In the GEE platform, annual mosaics and stacking of the spectral bands were generated for the classification of images, and in sequence the production of thematic maps in QGIS. The analysis of land cover change considered the classes: thinned Caatinga, conserved Caatinga, herbaceous vegetation, bare soil, water and others. The analysis of the spectral responses showed that the vegetation monitored in Ouricuri presented higher SRB in the infrared band and lower SRB in the red and blue bands, and that caused the pasture to produce higher vegetation indexes than the other locations. Through validation, it was observed that in Tauá, there was an overall accuracy of 91% and Kappa index of 89%, and in Ouricuri there was an overall accuracy of 90% and Kappa index of 86%, indicating excellent correctness of the classification model. The classification model proved to be effective in verifying the temporal and spatial land cover change, making it possible to identify places with the vegetation that was most affected and susceptible to degradation and generation of political support to minimize damage to the Caatinga Biome.
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献