Bioinspired material architectures from bighorn sheep horncore velar bone for impact loading applications

Author:

Aguirre Trevor G.,Fuller Luca,Ingrole Aniket,Seek Tim W.,Wheatley Benjamin B.,Steineman Brett D.,Donahue Tammy L. Haut,Donahue Seth W.

Abstract

Abstract Rocky Mountain bighorn sheep rams (Ovis canadensis canadensis) routinely conduct intraspecific combat where high energy cranial impacts are experienced. Previous studies have estimated cranial impact forces to be up to 3400 N during ramming, and prior finite element modeling studies showed the bony horncore stores 3 × more strain energy than the horn during impact. In the current study, the architecture of the porous bone within the horncore was quantified, mimicked, analyzed by finite element modeling, fabricated via additive manufacturing, and mechanically tested to determine the suitability of the novel bioinspired material architecture for use in running shoe midsoles. The iterative biomimicking design approach was able to tailor the mechanical behavior of the porous bone mimics. The approach produced 3D printed mimics that performed similarly to ethylene–vinyl acetate shoe materials in quasi-static loading. Furthermore, a quadratic relationship was discovered between impact force and stiffness in the porous bone mimics, which indicates a range of stiffness values that prevents impact force from becoming excessively high. These findings have implications for the design of novel bioinspired material architectures for minimizing impact force.

Funder

Colorado Office of Economic Development and International Trade

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3