Author:
Fischer Sarah,Greet Joe,Walsh Christopher J.,Catford Jane A.
Abstract
AbstractRiparian forests are structured and maintained by their hydrology. Woody riparian plants typically adapt to the local flood regime to maximise their likelihood of survival and reproductive success. Understanding how extant trees form and reproduce in response to flood disturbance is crucial for predicting vegetation changes and informing restoration. Working in a temperate evergreen riparian forest, we aimed to determine whether disturbance-based responses of plants found in other ecosystems also typify woody plants in riparian forests where disturbances are often mild or chronic, non-lethal, annual events. Using plant surveys and 20-year modelled hydrological data, we examined whether (1) the morphology (main stem diameter, height, crown width, crown extent, stem leaning) and (2) reproduction type (sexual and asexual reproduction) and extent of three dominant woody species (Eucalyptus camphora, Leptospermum lanigerum and Melaleuca squarrosa) vary with flood regime (flood frequency and flood duration); and (3) whether different morphology is associated with different reproductive strategies. Increased flooding generally resulted in increased stem numbers and greater stem leaning—morphologies associated with asexual reproduction—of our study species. More frequent flooding also reduced plant size and sexual reproduction in E. camphora. Sexual reproduction in the studied species was more common in taller plants with single, more upright stems in good condition. Flexible morphology and plastic reproductive strategy may constitute an adaptation of trees to mild or chronic disturbance in floodplains. Our findings suggest that flood regime (i.e. variable frequency and duration of flooding events) is critical to the structural integrity and self-maintenance of species-diverse riparian forests.
Publisher
Springer Science and Business Media LLC
Reference62 articles.
1. Petit, R. J. & Hampe, A. Some evolutionary consequences of being a tree. Annu. Rev. Ecol. Evol. Syst. 37, 187–214 (2006).
2. Chapin, F. S. III., Schulze, E. & Mooney, H. A. The ecology and economics of storage in plants. Annu. Rev. Ecol. Syst. 21(1), 423–447 (1990).
3. Davidson, N. C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshw. Res. 65(10), 934–941 (2014).
4. Rodríguez-González, P. M. et al. Subsidy or stress? Tree structure and growth in wetland forests along a hydrological gradient in Southern Europe. For. Ecol. Manag. 259(10), 2015–2025 (2010).
5. Megonigal, J. P. et al. Aboveground production in southeastern floodplain forests: A test of the subsidy–stress hypothesis. Ecology 78(2), 370–384 (1997).
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献