Sustainable approach for catalytic green epoxidation of oleic acid with applied ion exchange resin

Author:

Rahman Mariam Abdul,Mubarak Nabisab Mujawar,Azmi Intan Suhada,Jalil Mohd Jumain

Abstract

AbstractEpoxides were primarily derived from petroleum-based sources. However, there has been limited research on optimizing the process parameters for epoxidized palm oil-derived oleic acid, resulting in its underutilization. Therefore, this study aimed to optimize the catalytic epoxidation of palm oleic acid concerning the oxirane content by applying ion exchange resin as a catalyst. Epoxidized oleic acid was produced using in-situ-formed performic acid by combining formic acid as the oxygen carrier with hydrogen peroxide as the oxygen donor. The findings revealed that the optimal reaction conditions for producing epoxidized oleic acid with the highest oxirane content were an Amberlite IR-120 catalyst loading of 0.9 g, a molar ratio of formic acid to oleic acid of 1:1., and a molar ratio of hydrogen peroxide to oleic acid of 1:1.1. By employing these optimal conditions, the maximum relative conversion of palm oleic acid to oxirane was achieved at 85%. The reaction rate constants (k) based on the optimized epoxidized oleic acid are determined as follows: k11 = 20 mol L−1 min−1, k12 = 2 mol L−1 min−1, and k2 = 20 mol L−1 min−1. The findings validated the kinetic model by showing good agreement between the simulation and experimental data.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3