Supplemental structured surveys and pre-existing detection models improve fine-scale density and population estimation with opportunistic community science data

Author:

Hallman Tyler A.,Robinson W. Douglas

Abstract

AbstractDensity and population estimates aid in conservation and stakeholder communication. While free and broadly available community science data can effectively inform species distribution models, they often lack the information necessary to estimate imperfect detection and area sampled, thus limiting their use in fine-scale density modeling. We used structured distance-sampling surveys to model detection probability and calculate survey-specific detection offsets in community science models. We estimated density and population for 16 songbird species under three frameworks: (1) a fixed framework that assumes perfect detection within a specified survey radius, (2) an independent framework that calculates offsets from an independent source, and (3) a calibration framework that calculates offsets from supplemental surveys. Within the calibration framework, we examined the effects of calibration dataset size and data pooling. Estimates of density and population size were consistently biased low in the fixed framework. The independent and calibration frameworks produced reliable estimates for some species, but biased estimates for others, indicating discrepancies in detection probability between structured and community science surveys. The calibration framework produced reliable population estimates with as few as 10 calibration surveys with positive detections. Data pooling dramatically decreased bias. This study provides conservationists and managers with a cost-effective method of estimating density and population.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3