Author:
Yao Haiyan,Zhang Xin,Guo Qiang,Miao Yufeng,Guan Shan
Funder
Jilin Provincial Development and Reform Commission innovation capacity construction fund
Publisher
Springer Science and Business Media LLC
Reference40 articles.
1. Tightiz, L. et al. An intelligent system based on optimized ANFIS and association rules for power transformer fault diagnosis. ISA Trans. 103, 63–74 (2020).
2. Zhang, Y. et al. Fault diagnosis of transformer using artificial intelligence: A review. Front. Energy Res. 10, 1006474 (2022).
3. Wani, S. A. et al. Advances in DGA based condition monitoring of transformers: A review. Renew. Sustain. Energy Rev. 149, 111347 (2021).
4. Malik, H. & Mishra, S. Application of gene expression programming (GEP) in power transformers fault diagnosis using DGA. IEEE Trans. Ind. Appl. 52(6), 4556–4565 (2016).
5. Lin, J., Ma, J. & Zhu, J. Hierarchical federated learning for power transformer fault diagnosis. IEEE Trans. Instrum. Meas. 71, 1–11 (2022).