Assessment of neuro-pulmonary crosstalk in asthmatic mice: effects of DiNP exposure on cellular respiration, mitochondrial oxidative status and apoptotic signaling

Author:

Kehinde Samuel AbiodunORCID,Olajide Abosede TemitopeORCID,Ore Ayokanmi,Praveena Sarva Mangala,Ataya Farid S.,El-Gazzar Ahmed M.

Abstract

AbstractHuman health is becoming concerned about exposure to endocrine disrupting chemicals (EDCs) emanating from plastic, such as phthalates, which are industrially employed as plasticizers in the manufacturing of plastic products. Due to some toxicity concerns, di(2-ethylhexyl) phthalate (DEHP) was replaced by diisononyl phthalate (DiNP). Recent data, however, highlights the potential of DiNP to interfere with the endocrine system and influence allergic responses. Asthma affects brain function through hypoxia, systemic inflammation, oxidative stress, and sleep disturbances and its effective management is crucial for maintaining respiratory and brain health. Therefore, in DiNP-induced asthmatic mice, this study investigated possible crosstalk between the lungs and the brain inducing perturbations in neural mitochondrial antioxidant status, inflammation biomarkers, energy metabolizing enzymes, and apoptotic indicators. To achieve this, twelve (n = 12, 20–30 g) male BALB/c mice were divided into two (2) experimental groups, each with five (6) mice. Mice in group II were subjected to 50 mg/kg body weight (BW) DiNP (Intraperitoneal and intranasal), while group I served as the control group for 24 days. The effects of DiNP on neural energy metabolizing enzymes (Hexokinase, Aldolase, NADase, Lactate dehydrogenase, Complex I, II, II & IV), biomarkers of inflammation (Nitric oxide, Myeloperoxidase), oxidative stress (malondialdehyde), antioxidants (catalase, glutathione-S-transferase, and reduced glutathione), oncogenic and apoptotic factors (p53, K-ras, Bcl, etc.), and brain histopathology were investigated. DiNP-induced asthmatic mice have significantly (p < 0.05) altered neural energy metabolizing capacities due to disruption of activities of enzymes of glycolytic and oxidative phosphorylation. Other responses include significant inflammation, oxidative distress, decreased antioxidant status, altered oncogenic-apoptotic factors level and neural degeneration (as shown in hematoxylin and eosin-stained brain sections) relative to control. Current findings suggest that neural histoarchitecture, energy metabolizing potentials, inflammation, oncogenic and apoptotic factors, and mitochondrial antioxidant status may be impaired and altered in DiNP-induced asthmatic mice suggesting a pivotal crosstalk between the two intricate organs (lungs and brain).

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3