Activity networks determine project performance

Author:

Vazquez Alexei,Pozzana Iacopo,Kalogridis Georgios,Ellinas Christos

Abstract

AbstractProjects are characterised by activity networks with a critical path, a sequence of activities from start to end, that must be finished on time to complete the project on time. Watching over the critical path is the project manager’s strategy to ensure timely project completion. This intense focus on a single path contrasts the broader complex structure of the activity network, and is due to our poor understanding on how that structure influences this critical path. Here, we use a generative model and detailed data from 77 real world projects (+ $10 bn total budget) to demonstrate how this network structure forces us to look beyond the critical path. We introduce a duplication-split model of project schedules that yields (i) identical power-law in- and-out degree distributions and (ii) a vanishing fraction of critical path activities with schedule size. These predictions are corroborated in real projects. We demonstrate that the incidence of delayed activities in real projects is consistent with the expectation from percolation theory in complex networks. We conclude that delay propagation in project schedules is a network property and it is not confined to the critical path.

Funder

European Commission

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Emerge of scaling in project schedules;The European Physical Journal B;2024-04

2. Activity delay patterns in project networks;Physica A: Statistical Mechanics and its Applications;2024-03

3. Manageable to unmanageable transition in a fractal model of project networks;Chaos, Solitons & Fractals;2024-03

4. Decision-Making in Project and Operations Management;Studies in Systems, Decision and Control;2024

5. Prediction of SMEs’ R&D performances by machine learning for project selection;Scientific Reports;2023-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3