Polyphenols from persimmon fruit attenuate acetaldehyde-induced DNA double-strand breaks by scavenging acetaldehyde

Author:

Matsuzaki Kenichiro,Kumatoriya Kenji,Tando Mizuki,Kometani Takashi,Shinohara Miki

Abstract

AbstractAcetaldehyde, a metabolic product of ethanol, induces DNA damage and genome instability. Accumulation of acetaldehyde due to alcohol consumption or aldehyde dehydrogenase (ALDH2) deficiency increases the risks of various types of cancers, including esophageal cancer. Although acetaldehyde chemically induces DNA adducts, the repair process of the lesions remains unclear. To investigate the mechanism of repair of acetaldehyde-induced DNA damage, we determined the repair pathway using siRNA knockdown and immunofluorescence assays of repair factors. Herein, we report that acetaldehyde induces DNA double-strand breaks (DSBs) in human U2OS cells and that both DSB repair pathways, non-homologous end-joining (NHEJ) and homology-directed repair (HDR), are required for the repair of acetaldehyde-induced DNA damage. Our findings suggest that acetaldehyde-induced DNA adducts are converted into DSBs and repaired via NHEJ or HDR in human cells. To reduce the risk of acetaldehyde-associated carcinogenesis, we investigated potential strategies of reducing acetaldehyde-induced DNA damage. We report that polyphenols extracted from persimmon fruits and epigallocatechin, a major component of persimmon polyphenols, attenuate acetaldehyde-induced DNA damage without affecting the repair kinetics. The data suggest that persimmon polyphenols suppress DSB formation by scavenging acetaldehyde. Persimmon polyphenols can potentially inhibit carcinogenesis following alcohol consumption.

Funder

Japan Society for the Promotion of Science

Kindai University

Takeda Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3