Deep learning-based automated and universal bubble detection and mask extraction in complex two-phase flows

Author:

Kim Yewon,Park Hyungmin

Abstract

AbstractWhile investigating multiphase flows experimentally, the spatiotemporal variation in the interfacial shape between different phases must be measured to analyze the transport phenomena. For this, numerous image processing techniques have been proposed, showing good performance. However, they require trial-and-error optimization of thresholding parameters, which are not universal for all experimental conditions; thus, their accuracy is highly dependent on human experience, and the overall processing cost is high. Motivated by the remarkable improvements in deep learning-based image processing, we trained the Mask R-CNN to develop an automated bubble detection and mask extraction tool that works universally in gas–liquid two-phase flows. The training dataset was rigorously optimized to improve the model performance and delay overfitting with a finite amount of data. The range of detectable bubble size (particularly smaller bubbles) could be extended using a customized weighted loss function. Validation with different bubbly flows yields promising results, with AP50reaching 98%. Even while testing with bubble-swarm flows not included in the training set, the model detects more than 95% of the bubbles, which is equivalent or superior to conventional image processing methods. The pure processing speed for mask extraction is more than twice as fast as conventional approaches, even without counting the time required for tedious threshold parameter tuning. The present bubble detection and mask extraction tool is available online (https://github.com/ywflow/BubMask).

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3