Interaural and sex differences in the natural evolution of hearing levels in pre-symptomatic and symptomatic carriers of the p.Pro51Ser variant in the COCH gene

Author:

Moyaert Julie,Gilles Annick,Mertens Griet,Lammers Marc J. W.,Gommeren Hanne,Janssens de Varebeke Sebastien,Fransen Erik,Verhaert Nicolas,Denys Sam,van de Berg Raymond,Pennings Ronald,Vanderveken Olivier,Van Rompaey Vincent

Abstract

AbstractHearing impairment constitutes a significant health problem in developed countries. If hearing loss is slowly progressive, the first signs may not be noticed in time, or remain untreated until the moment the auditory dysfunction becomes more apparent. The present study will focus on DFNA9, an autosomal dominant disorder caused by pathogenic variants in the COCH gene. Although several cross-sectional studies on this topic have been conducted, a crucial need for longitudinal research has been reported by many authors. Longitudinal trajectories of individual hearing thresholds were established as function of age and superimposed lowess curves were generated for 101 female and male carriers of the p.Pro51Ser variant. The average number of times patients have been tested was 2.49 years with a minimum of 1 year and a maximum of 4 years. In addition, interaural and sex differences were studied, as they could modify the natural evolution of the hearing function. The current study demonstrates that, both in female carriers and male carriers, the first signs of hearing decline, i.e. hearing thresholds of 20 dB HL, become apparent as early as the 3rd decade in the highest frequencies. In addition, a rapid progression of SNHL occurs between 40 and 50 years of age. Differences between male and female carriers in the progression of hearing loss are most obvious between the age of 50 and 65 years. Furthermore, interaural discrepancies also manifest from the age of 50 years onwards. High-quality prospective data on the long-term natural evolution of hearing levels offer the opportunity to identify different disease stages in each cochlea and different types of evolution. This will provide more insights in the window of opportunity for future therapeutic intervention trials.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3