A Report On Fluctuating Free Convection Flow Of Heat Absorbing Viscoelastic Dusty Fluid Past In A Horizontal Channel With MHD Effect

Author:

Ali Farhad,Bilal Muhammad,Gohar Madeha,Khan Ilyas,Sheikh Nadeem Ahmad,Nisar Kottakkaran Sooppy

Abstract

AbstractThe free convective unsteady fluctuating, MHD flow of electrically conducting viscoelastic dusty fluid in a channel-driven with the impact of oscillating pressure gradient and the motion of the upper plate has been studied in this article. The noteworthy heat generation/absorption has also taken into account, the heat generation established the mechanism of heat transfer by both the momentum of fluid and the motion of dust particle and absorption of heat by the dust particle is because of conduction. The coupled governing partial differential equations are reduced to the ordinary differential equation through the assumed periodic solutions. Analytical solutions for the velocity of the fluid as well as the velocity of dust particles and for energy equation of the fluid and for dust particles are obtained by using Poincare-Light Hill Perturbation Technique. The influence of various parameters of interest is discussed on the velocity and temperature profiles of the fluid and particles. The evolution of fluid-phase and dusty-phase with dual behavior of the magnetic parameter for both boundary layer and free stream velocities has been discussed. The boundary layer velocity decreased with an increase in magnetic parameter, while at the free stream flow, the result is quite opposite. The above result of magnetic field is worthwhile and can be used to control the boundary layer thickness. The current work also concludes that by increasing the Peclet number and concentration of the dust particles retards the boundary layer velocity. Furthermore, various physical parameters like coefficient of heat absorption, concentration of the dust particles, peclet number, magnetic parameter, and temperature relaxation time parameter retard the motion of dusty-phase, while Grashof number enhances the flow of dusty-phase. Other properties of fluid, which have great importance for engineers are, the rate of heat transfer and skin friction. It is shown in Table 1 that by increasing the value of Peclet number from 1 to 2 it increases the rate of heat transfer from 1.3263 to 1.3387. Furthermore, Table 2 shows that by increasing the concentration parameter from 2 to 4 the skin friction increases from 2.3872 to 4.7799.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3