Detection and quantification of bovine papillomavirus DNA by digital droplet PCR in sheep blood

Author:

Roperto Sante,Cutarelli Anna,Corrado Federica,De Falco Francesca,Buonavoglia Canio

Abstract

AbstractHighly pathogenic bovine papillomaviruses (BPVs) were detected and quantified for the first time using digital droplet polymerase chain reaction (ddPCR) by liquid biopsy in 103 clinically healthy sheep. Overall, ddPCR detected BPVs in 68 blood samples (66%). BPV infection by a single genotype was revealed in 61.8% of the blood samples, and BPV coinfection by double, triple or quadruple genotypes was observed in 38.2% of liquid biopsies. The BPV-2 genotype was most frequently seen in sheep, whereas BPV-1 was the least common. Furthermore, ddPCR was very useful for detection and quantification; the BPV-14 genotype was observed for the first time in ovine species, displaying the highest prevalence in some geographical areas (Apulia). In 42 of the positive samples (61.8%), a single BPV infection was observed, 26 of which were caused by BPV-2 (61.9%) and 7 by BPV-13 (16.7%). BPV-14 was responsible for 7 single infections (16.7%) and BPV-1 for 2 single infections (4.7%). Multiple BPV coinfections were observed in the remaining 26 positive samples (38.2%), with dual BPV-2/BPV-13 infection being the most prevalent (84.6%). BPV infection by triple and quadruple genotypes was also observed in 11.5% and 3.8% of cases, respectively. The present study showed that ddPCR, a biotechnological refinement of conventional PCR, is by far the most sensitive and accurate assay for BPV detection compared to conventional qPCR. Therefore, ddPCR displayed an essential diagnostic and epidemiological value very useful for the identification of otherwise undetectable BPV genotypes as well as their geographical distributions and suggesting that animal husbandry practices contribute to cross-species transmission of BPVs.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference34 articles.

1. IARC monographs on the evaluation of carcinogenesis risk to humans. In Human Papillomavirus, Vol. 90, (ed. World Health Organization), 47 (WHO Press, 2007).

2. Doorbar, J., Egawa, N., Griffin, H., Kranjec, C. & Murakami, I. Human papillomavirus molecular biology and disease association. Rev. Med. Virol. 25(Suppl. 1), 2–23 (2016).

3. Antonsson, A. & McMillan, N. A. J. Papillomavirus in healthy skin of Australian mammals. J. Gen. Virol. 87, 3195–3200 (2006).

4. Papillomavirus Episteme: http://pave.niaid.nih.gov/; Accessed 15 January 2021.

5. Yamashita-Kawanishi, N. et al. Characterization of bovine papillomavirus 28 (BPV28) and a novel genotype BPV29 associated with vulval papillomas in cattle. Vet. Microbiol. 250, 108879. https://doi.org/10.1016/j.vetmic.2020.108879 (2020).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3