Author:
Elsayed Ahmed A.,Erfan Mazen,Sabry Yasser M.,Dris Rachid,Gaspéri Johnny,Barbier Jean-Sébastien,Marty Frédéric,Bouanis Fatima,Luo Shaobo,Nguyen Binh T. T.,Liu Ai-Qun,Tassin Bruno,Bourouina Tarik
Abstract
AbstractMicroplastics contaminating drinking water is a growing issue that has been the focus of a few recent studies, where a major bottleneck is the time-consuming analysis. In this work, a micro-optofluidic platform is proposed for fast quantification of microplastic particles, the identification of their chemical nature and size, especially in the 1–100 µm size range. Micro-reservoirs ahead of micro-filters are designed to accumulate all trapped solid particles in an ultra-compact area, which enables fast imaging and optical spectroscopy to determine the plastic nature and type. Furthermore, passive size sorting is implemented for splitting the particles according to their size range in different reservoirs. Besides, flow cytometry is used as a reference method for retrieving the size distribution of samples, where chemical nature information is lost. The proof of concept of the micro-optofluidic platform is validated using model samples where standard plastic particles of different size and chemical nature are mixed.
Funder
Agence Nationale de la Recherche
Publisher
Springer Science and Business Media LLC
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献