UiO66-NH2-TiO2/NiF photoanode for photocatalytic fuel cell by towards simultaneous treatment of antibiotic wastewater and electricity generation

Author:

Abbasnia Abbas,Rezaei Kalantary Roshanak,Farzadkia Mahdi,Yeganeh Mojtaba,Esrafili Ali

Abstract

AbstractEnvironmental destruction, water crisis, and clean energy are among the very important challenges worldwide based on sustainable development goals. Photocatalytic fuel cell, a potential candidate for converting chemical energy into electrical energy through a pollution-free method, holds promise in addressing these challenges. In this regard, we investigated the response of a photoanode covered with UiO66-NH2-TiO2/NiF on a porous nickel foam as an attractive electrochemical response to remove antibiotics from aqueous solution and simultaneously produce electricity using a one-step hydrothermal synthesis. Nickel foam with its fine structure provides a suitable space for the interaction of light, catalyst, and efficient mass transfer of reactive molecules. It appears that it can be used as a competitive electrode in fuel cells. In order to investigate the properties of the photocatalyst, structural analyses including XRD, FESEM, FTIR, and UV–vis DRS were utilized. Additionally, polarization and electrochemical tests such as chronoamperometry and EIS were measured to further examine the electrochemical features of the PFC photoanode system. The obtained results under optimal conditions (SMZ concentration = 20 ppm, pH = 6, irradiation time = 120 min) were as follows: removal efficiency of 91.7%, Pmax = 16.98 μW/cm2, Jsc = 96.75 μA/cm2, Voc = 644 mV. The light-induced current flow in UiO66-NH2-TiO2/NiF exhibited prominent and reproducible photocurrent responses, indicating efficient and stable charge separation in TiO2/NiF composite materials, which is a promising strategy for pollutant removal and simultaneous electricity generation.

Funder

Iran University of Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3